
Synthesis of Observers for Autonomic Evolutionary
Systems from Requirements Models

Jan-Philipp Steghöfer, Benedikt Eberhardinger, Florian Nafz, and Wolfgang Reif
Institute for Software & Systems Engineering, University of Augsburg, Germany

{steghoefer, nafz, reif}@informatik.uni-augsburg.de, benedikt.eberhardinger@googlemail.com

Abstract—Monitoring the behaviour of autonomous evolution-
ary systems is a necessity to control their behaviour at runtime
and react to undesired changes or developments. We propose
an approach that derives observers from system requirements
annotated with OCL-constraints in a model-driven way that can
easily be integrated into iterative incremental design processes.

Keywords—Autonomous agents; Adaptive Systems; Software
Engineering; Fault Detection

I. MONITORING IN AUTONOMIC EVOLVING SYSTEMS

Autonomic systems make decisions at runtime that can
have consequences that were unforeseeable at design-time.
This is due to the fact that evolutionary changes of the system
and of the environment that also occur at runtime, make it
impossible to pre-determine every possible future system state
at design time. Therefore, it is even more important to make
credible assertions about the system behaviour at design-time
than for more conventional, non-autonomous systems.

Alas, traditional verification techniques such as theorem
proving and model checking are hardly applicable for large-
scale autonomous evolving systems due to their complexity,
the associated state-space explosion, and the need for a global
system view that is inherent in these techniques. Therefore,
some approaches exist that shift verification to runtime as well,
where all information necessary is available and a system struc-
ture and configuration has already evolved. Most prominently,
runtime verification [1] is concerned with techniques to moni-
tor system properties. In combination with runtime reflection,
a reaction to violations of a specification becomes possible.
Quantitative verification at runtime [2] uses monitoring to
construct or update a global model that can then be verified to
check if the specification is violated and can trigger a reaction
based on the model. These and related approaches use formal
specifications, often formulated in temporal logic, and complex
global system models to specify and verify system behaviour.

This paper presents a work in progress that tries to integrate
the creation of suitable observers into the design process of the
system by defining a transformation from constraints that cap-
ture system requirements to these observers. The constraints
are formulated in OCL (Object Constraint Language)—a lan-
guage arguably more accessible to system designers than the
aforementioned temporal logics—and defined on a domain
model. The transformation can easily be integrated in a design
process and allows a model-driven development of monitor-
ing capabilities. Sect. II first describes the Restore Invariant
Approach, the formal basis for the framework proposed here.
The basic transformation process is introduced in Sect. III,
while Sect. IV to Sect. VI give a more detailed view of the
transformation steps. The paper concludes with a discussion
of the approach and an outlook on future work.

II. THE RESTORE INVARIANT APPROACH

We employ the Restore Invariant Approach (RIA) [3]
that defines a corridor of correct behaviour. The system is
continuously checked against this corridor. While the system
remains within the corridor, it works correctly as verified at
design time. When it leaves the corridor, a reconfiguration
takes place. The corridor is constituted by an invariant INV
that is basically the conjunction of all constraints φ ∈ Φ.
Thus, if one of the constraints is violated, INV doesn’t hold
any longer and the system has to react accordingly. More
formally, the system can be regarded as a transition system
SYS = (S,→, I, AP,L) with S a set of states, →⊆ S × S
a transition relation, I ⊆ S a set of initial states, AP a set
of atomic propositions and L : S → 2AP a labelling function.
Within such a system, a trace π is a sequence of states σi ∈ S,
related via → and starting from an initial state σ0 ∈ I .

An exemplary trace of an abstract transition system SYS is
shown in Fig. 1. The corridor distinguishes states in which the
invariant holds and those in which it does not. The figure also
shows that a system reaction to the violation of INV brings
the system back into the corridor. To achieve this, the reaction
has to be designed appropriately. The systems we consider are
composed of individual autonomous agents with potentially
complex interactions with other agents and the environment.
To ensure that the agents participating in a system reaction
do not interfere with it, they transition to a quiescent state in
which they perform no critical actions [4].

Since the invariant is the conjunction of all system con-
straints, the violation of one constraint implies the violation
of the invariant. It is therefore necessary to monitor the
individual constraints and react to their individual violation.
The monitoring is performed by an observer that is coupled
with a controller, as defined in the Observer/Controller ar-
chitecture, [5], a variant of the classic MAPE cycle, and an
operationalisation of a supervisory feedback control loop as,
e.g., used in discrete event systems [6]. We assume that both
monitoring and analysis take place in the observer, while the

Fig. 1. The behavioural corridor of an autonomous evolving system as defined
by the RIA invariant.

Requirements
(modelled in KAOS)

Constraints

Observer Models

Observer Implementation

Domain Model

Generic
Observer/Controller

Model

M2M Transformation

M2T Transformation

Fig. 2. The transformation process, starting from requirements modelled in
KAOS that are successively formally described as the requirements become
clearer and a domain model is elaborated, to the abstract observers expressed
as UML state machines backed by a UML model of the observer/controller,
to the final implemented observers for the target platform.

planning and execution steps of the MAPE cycle occur in the
controller. The observer creates situation indicators from the
data collected that is used by the controller to make decisions
that will influence the future course of the system. Such
decisions can include triggering a self-organisation process
or changes in the system parameters. The observer/controller
thus constitutes a feedback and control loop that can adapt the
system to counter unwanted behaviour in an evolving system.

So far, the use of RIA required the manual implementation
of the observers that checked whether or not the system is
still in the corridor. With the transformation process presented
in the next sections, this step can now be automated and
integrated into the software engineering process.

III. THE TRANSFORMATION PROCESS – FROM
REQUIREMENTS TO OBSERVERS

Fig. 2 gives an overview of the transformation process.
The first step, the formal description of the system goals and
constraints happens during the iterative process of require-
ments analysis. During this process, a domain model is created
that can be used to express OCL-constraints (see Sect. IV)
that formally describe some of the requirements. These OCL-
constraints define the correct states of the system and are
transformed in a model-to-model transformation to abstract
observers (see Sect. V) when moving from the analysis phase
to the design phase in each iteration. The state-based evaluation
of the OCL-constraints conforms well with the semantics of
the transition system RIA is based on as described above. The
behaviour of the abstract observers is modelled with UML
sequence diagrams. These diagrams describe the interactions
of an observer/controller model, described as a UML class
diagram. For each OCL-constraint, a new abstract constraint
class is created. Finally, the abstract observers and constraints
are transformed into code from which the actual distributed
observers for the agent system can be compiled (see Sect. VI)
when moving from the design to the implementation phase.
This last transformation is highly specific to the target system.

The process can be repeated when requirements or the do-
main model change in a model-driven design (MDD) approach.
Changed parts of system models and implementation will be
re-generated while existing models and code are preserved.

Maintain[FrequencyStability]

Frequency deviation detected

Power output adapted to
compensate for frequency

deviation

ControllablePowerPlant

Network frequency requested Network frequency compared to
optimal frequency

Requirement
System goal

Assignment
Refinement

Fig. 3. The KAOS model for the goal “Maintain[FrequencyStability]”

IV. STEP 1 – FROM REQUIREMENTS TO CONSTRAINTS

Cheng et al. propose an extension of the goal-oriented
requirements specification methodology KAOS [7] that allows
the expression of requirements for adaptive systems by incor-
porating uncertainty factors the system is supposed to adapt
to [8]. These uncertainties are identified with the help of
a conceptual domain model. Their existence can lead to a
reformulation of requirements, introduction of new require-
ments, or a change in existing ones. The extended KAOS
approach can be integrated easily in an iterative incremental
software engineering process since it is based on progressive
refinements from system goals to individual requirements of
the agents. As part of this refinement process, we propose to
augment requirements with semi-formal specification of sys-
tem goals and constraints in OCL. These OCL-constraints will
be monitored by the observers. The constraints are formulated
on the concepts defined in the domain model.

Example: Constraint to observe the network frequency
in power grids. In autonomous power grids, scheduling of
controllable power sources is performed based on predictions
of output and demand. These predictions are based on a num-
ber of uncertain factors. Therefore, even the best scheduling
algorithms will never be able to approximate the required
demand and the so called “residual load”, i.e., the power that
needs to be produced when all production by non-controllable
power plants (solar, wind, residential heat-and-power) has been
factored in. However, the power grid is very sensitive to
deviations between production and demand and therefore, there
needs to be an adaptive mechanism that can quickly react to
such deviations. Since deviations alter the power grids internal
frequency, all power plants can monitor this frequency and
react to deviations from the optimal frequency autonomously.

The necessity of adapting the power plants’ output based
on the network frequency is captured in the goal “Main-
tain[FrequencyStability]”. It can be refined to concrete require-
ments on the controllable power plant as shown in Fig. 3. The
power plant needs to measure the frequency and compare it
to the optimal frequency. It reacts to deviations by adapting
its output. The last two requirements capture the control
loop: the change of the output has a direct effect on the
network frequency, thus providing feedback. The constraint
that needs to be observed corresponds to the formal description
of the requirement “Network frequency compared to optimal
frequency”. In OCL it can be expressed as:
context ControllablePowerPlant inv noFrequencyDeviations:

abs(currFrequency - optimalFrequency) < allowedDeviation
While this constraint may seem simplistic, it is a good

example for a property that has to be monitored as part of a
feedback loop in an autonomous system.

Fig. 4. Simplified generic Observer/Controller model as used in the
transformation, specified as a UML class diagram.

V. STEP 2 – FROM CONSTRAINTS TO OBSERVER MODELS

After the relevant requirements have been formally defined
with OCL-constraints, the resulting requirements model and
the domain model are transformed into observer models that
are the basis of concrete observer implementations. The trans-
formation is defined in QVT [9] which uses Queries on the
source models to Transform them into target models, the Views.
Part of the views can be pre-specified. We use this feature
to specify a generic observer/controller model, as depicted in
Fig. 4, that provides the structure for the observers models and
is based on the publish/subscribe pattern.

The relevant interaction between the classes is depicted
in Fig. 5. Whenever an ObservedAgent registers a change
(basically, a transition in SYS), it informs its Observer. The
Observer then updates its internal model of the agent and
evaluates all Constraints. If one of them evaluates to false,
the Observer sends the ObservedAgent the order to go
into the quiescent state. It then informs all Controllers of
the constraint violation. Each Controller can then decide
whether or not to enact changes in the system. After any
changes have been performed, the Observer is notified that
the reconfiguration is done. When all Controllers reported
back, the Observer tells the ObservedAgent to leave the
quiescent state and continue with its productive work. Please
note that at this point it is not specified how the information
about the state change is communicated to the Observer.
This decision is delegated to a later point (see Sect. VI).

Each agent from the domain model is transformed into a
new agent class that is derived from ObservedAgent and
from Agent, the latter class specifying general capabilities
such as communication. It is important to note that each agent
from the requirements needs to have a corresponding class
in the domain model with the same name. For each OCL-
constraint from the requirements, a new class is created that
is derived from the abstract Constraint class. If temporal
constraints are to be observed, e.g., to limit the number of
violations within a sliding time window, specialisations of
Constraint that record a history can be used. The OCL-
constraint itself is used as the guard of the transitions of the
UML activity diagram that describes the isViolated()
method of the new constraint class. There is one observer per
agent, but there are several constraints per observer.

Fig. 6 depicts the elements that are used in this transfor-
mation process as well as a simplified version of the resulting
class diagram. The transformation creates class diagrams for
all agents, as well as the diagrams that model the respective
methods for the new constraint classes and the observer. It

Fig. 5. A simplified sequence diagram showing the interactions between the
elements of the generic Observer/Controller model.

also checks the domain model and the requirements model for
inconsistencies, e.g., if the requirements model defines agents
for which no class exists in the domain model. The result of the
transformation process is a platform independent model of the
monitoring infrastructure specified in the UML2 meta-model
packaged with the Eclipse Modeling Framework (EMF).

The Controller class is only a stub at this point, with no
functionality. Its specification can be much more complex than
the observers’ and is usually a part of the design documents.
However, the template provided by the transformation detailed
here can be used as a starting point for the modelling and the
implementation of the controller.

VI. STEP 3 – FROM OBSERVER MODELS TO OBSERVER
IMPLEMENTATIONS

The final transformation to actual concrete observer im-
plementations contains many platform specific choices, e.g.,
whether or not observers and controllers are independent
agents or become part of the agents defined in the domain
model, whether properties of the agents can be accessed di-
rectly or only via message passing, etc. It will therefore have to
be adapted to each target platform and target system. However,
some of the basic principles remain the same, regardless of the
transformation target.

The classes and sequence diagrams have to be translated
into the target programming language and the target platform,
i.e., the multi-agent platform or middleware the system will
run on. Sequence diagrams become implementations of the
methods of the classes. The OCL-constraints are parsed to con-
ditional statements within Constraint.isViolated()
for the corresponding constraint classes. Note that the multiple
inheritance in the class diagram can be implemented differ-
ently, depending on the target language. In Java, an interface
can be used, especially if the methods quiescent() and
continue() are abstract methods anyways.

An important decision has to be made with regard
to the flow of information at this point. Changes in the
ObservedAgents cause updates to an internal model of
the Observer on which the constraints will be evaluated.
Alternatively, the observer or the implementations of the
Constraints can request the required information from the
ObservedAgents directly. Which choice is best depends on
many properties of the system, including whether message-
based communication is used, how often the information
changes and how complex an internal model would be.

An interesting issue is the creation of appropriate boot-
strapping code to start observers and controllers along with the
respective agents. During the bootstrapping phase, instances

Maintain[FrequencyStability]

Frequency deviation detected

ControllablePowerPlant

Network frequency compared to
optimal frequency

Source Models Transformed Model

+ Generic
 Observer/Controller Model

Fig. 6. The sources of the transformation (simplified representation) and the resulting simplified class diagram for the example given in Sect. IV.

have to be created and associations set accordingly. After this
initialisation, the controllers will have to register with the
observers. Therefore, a phased system boot is usually advised.

A concrete observer implementation will have to be cou-
pled with a controller that adapts the system accordingly.
For the example given, there are a number of decentralised
approaches that change the output of power plants to stabilise
the network frequency [10].

VII. DISCUSSION AND OUTLOOK

In this paper, we presented an approach to transform
formally specified requirements into observers that are able
to monitor an autonomous evolving system at runtime. Even
though not all details of the approach have been elaborated yet,
we believe that this approach will provide system engineers
with an accessible way to integrate online monitoring into such
systems. Integration into the software engineering process is a
great advantage, as is the universality of the process. Only the
last transformation step is system-specific, at least as long as
the generic observer/controller model can be used. The most
important benefit, however, is that constraints can be easily
expressed in OCL, a language that is arguably much better
understood by system engineers than temporal logics or other
formal specification paradigms.

There are some limitation to the current status of the
approach that have to be noted. First of all, the observed agent
has to provide information about its internal state voluntarily.
The assumption that an agent would always do this does not
hold in open heterogeneous multi-agent systems. In general, it
is desirable to only monitor externally observable properties,
but this limits the applicability of any monitoring approach
severely. Second of all, observing constraints that are defined
over the state of several agents is not possible with the 1:1
relation between agent and observer that we showed here.
Instead, a a regional view of the system would be helpful
where an observer can monitor several agents and obtain a
picture of a compartment of the system.

To deal with the latter limitation, we plan to exploit
hierarchies in our future work. As many systems are structured
hierarchically, we want to use the hierarchical structure and
observe constraints within individual parts of the hierarchy.
Additionally, we are looking into using soft constraints to
optimise the system on the fly. Not all constraint violations
make it necessary to reconfigure the system, some can also
trigger a self-optimisation process that does not require the

agent to go into a quiescent state. Such a staged reaction can
also be used to, e.g., escalate reconfiguration attempts if less
aggressive methods do not yield the desired result. Finally,
an interesting side effect of the way we propose to specify
constraints in the requirements model is that it should be
relatively straightforward to generate rely/guarantees from the
requirements models for use as a formal system specification
in verification [4].

ACKNOWLEDGEMENT
This research is partly sponsored by the German Research

Foundation (DFG) in the project “OC-Trust” (FOR 1085).

REFERENCES
[1] M. Leucker and C. Schallhart, “A brief account of runtime verification,”

Journal of Logic and Algebraic Programming, vol. 78, no. 5, pp. 293–
303, 2009.

[2] R. Calinescu, C. Ghezzi, M. Kwiatkowska, and R. Mirandola, “Self-
adaptive software needs quantitative verification at runtime,” Commun.
ACM, vol. 55, no. 9, pp. 69–77, 2012.

[3] F. Nafz, H. Seebach, J.-P. Steghöfer, G. Anders, and W. Reif, “Con-
straining Self-organisation Through Corridors of Correct Behaviour:
The Restore Invariant Approach,” in Organic Computing — A Paradigm
Shift for Complex Systems, ser. Autonomic Systems, C. Müller-Schloer,
H. Schmeck, and T. Ungerer, Eds. Springer Basel, 2011, pp. 79–93.

[4] F. Nafz, J.-P. Steghöfer, H. Seebach, and W. Reif, “Formal Modeling
and Verification of Self-* Systems Based on Observer/Controller-
Architectures,” in Assurances for Self-Adaptive Systems, ser. Lecture
Notes in Computer Science. Springer Basel, 2013, vol. 7740.

[5] H. Schmeck, C. Müller-Schloer, E. Çakar, M. Mnif, and U. Richter,
“Adaptivity and self-organization in organic computing systems,” ACM
Trans. Auton. Adapt. Syst, vol. 5, no. 3, pp. 10:1–10:32, 2010.

[6] C. G. Cassandras and S. Lafortune, Introduction to discrete event
systems. Springer US, 2007, 2nd Edition.

[7] A. Lamsweerde and E. Letier, “From object orientation to goal ori-
entation: A paradigm shift for requirements engineering,” in Radical
Innovations of Software and Systems Engineering in the Future, ser.
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2004,
vol. 2941, pp. 325–340.

[8] B. Cheng, P. Sawyer, N. Bencomo, and J. Whittle, “A goal-based
modeling approach to develop requirements of an adaptive system with
environmental uncertainty,” in Model Driven Engineering Languages
and Systems, ser. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2009, vol. 5795, pp. 468–483.

[9] Object Management Group (OMG), “Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification,” 2005. [Online]. Available:
http://www.omg.org/spec/QVT/1.0/PDF

[10] G. Anders, C. Hinrichs, F. Siefert, P. Behrmann, W. Reif, and M. Son-
nenschein, “On the influence of inter-agent variation on multi-agent al-
gorithms solving a dynamic task allocation problem under uncertainty,”
in 2012 Sixth IEEE International Conference on Self-Adaptive and Self-
Organizing Systems (SASO). IEEE Computer Society, Washington,
D.C., 2012, pp. 29–38.

